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PrefaeThis Student SolutionsManual and StudyGuide forNumerial Analysis, Ninth Edition, by Burden and Fairesontains representative exerises that have been worked out in detail for all the tehniques disussed in thebook. Partiular attention was paid to ensure that the exerises solved in the Guide are those requiring insightinto the theory and methods disussed in the book. Although the answers to the odd exerises are also in thebak of the book, the results listed in this Study Guide generally go well beyond those in the book.For this edition we have added a number of exerises to the text that involve the use of a omputer algebrasystem (CAS). We hose Maple as our standard CAS, beause their NumerialAnalysis pakage parallelsthe algorithms in this book. However, any of the ommon omputer algebra systems, suh Mathematia,MATLAB, and the publi domain system, Sage, an be used with satisfation. In our reent teahing of theourse we have found that students understood the onepts better when they worked through the algorithmsstep-by-step, but let a omputer algebra system do the tedious omputation.It has been our pratie to inlude strutured algorithms in our Numerial Analysis book for all thetehniques disussed in the text. The algorithms are given in a form that an be oded in any appropriateprogramming language, by students with even a minimal amount of programming expertise.At the website for the book,http://www.math.ysu.edu/∼faires/Numerial-Analysis/you will �nd ode for all the algorithms written in the programming languages FORTRAN, Pasal, C, Java.You will also �nd ode in the form of worksheets for the omputer algebra systems, Maple, MATLAB, andMathematia. For this edition we have rewritten all the Maple programs to re�et the NumerialAnalysispakage and the numerous hanges that have been made to this system.The website ontains additional information about the book, and will be updated regularly to re�et anymodi�ations that might be made. For example, we will plae there any errata we are aware of, as well asresponses to questions from users of the book onerning interpretations of the exerises and appropriateappliations of the tehniques.We hope our Guide helps you with your study of Numerial Analysis. If you have any suggestions forimprovements that an be inorporated into future editions of the book or the supplements, we would bemost grateful to reeive your omments. We an be most easily ontated by eletroni mail at the addresseslisted below.Youngstown State University Rihard L. Burdenburden�math.ysu.eduAugust 14, 2010 J. Douglas Fairesfaires�math.ysu.eduvii
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Mathematial PreliminariesExerise Set 1.1, page 141. d. Show that the equation x− (lnx)x = 0 has at least one solution in the interval [4, 5].SOLUTION: It is not possible to algebraially solve for the solution x, but this is not required in theproblem, we must show only that a solution exists. Let
f(x) = x− (lnx)x = x− exp(x(ln(lnx))).Sine f is ontinuous on [4, 5] with f(4) ≈ 0.3066 and f(5) ≈ −5.799, the Intermediate ValueTheorem 1.11 implies that a number x must exist in (4, 5) with 0 = f(x) = x− (lnx)x.2. . Find intervals that ontain a solution to the equation x3 − 2x2 − 4x+ 3 = 0.SOLUTION: Let f(x) = x3 − 2x2 − 4x+ 3. The ritial points of f our when

0 = f ′(x) = 3x2 − 4x− 4 = (3x+ 2)(x− 2);that is, when x = − 2
3 and x = 2. Relative maximum and minimum values of f an our only atthese values. There are at most three solutions to f(x) = 0, beause f(x) is a polynomial of degreethree. Sine f(−2) = −5 and f (− 2

3

)

≈ 4.48; f(0) = 3 and f(1) = −2; and f(2) = −5 and
f(4) = 19; solutions lie in the intervals [−2,−2/3], [0, 1], and [2, 4].4. a. Find max

0≤x≤1
|f(x)| when f(x) = (2− ex + 2x) /3.SOLUTION: First note that f ′(x) = (−ex + 2) /3, so the only ritial point of f ours at x = ln 2,whih lies in the interval [0, 1]. The maximum for |f(x)| must onsequently be

max{|f(0)|, |f(ln 2)|, |f(1)|} = max{1/3, (2 ln2)/3, (4− e)/3} = (2 ln 2)/3.5. Use the Intermediate Value Theorem 1.11 and Rolle's Theorem 1.7 to show that the graph of
f(x) = x3 + 2x+ k rosses the x-axis exatly one, regardless of the value of the onstant k.SOLUTION: For x < 0,we have f(x) < 2x+ k < 0, provided that x < − 1

2k. Similarly, for x > 0,we have f(x) > 2x+ k > 0, provided that x > − 1
2k. By Theorem 1.11, there exists a number c with

f(c) = 0.If f(c) = 0 and f(c′) = 0 for some c′ 6= c, then by Theorem 1.7, there exists a number p between cand c′ with f ′(p) = 0. However, f ′(x) = 3x2 + 2 > 0 for all x. This gives a ontradition to thestatement that f(c) = 0 and f(c′) = 0 for some c′ 6= c. Hene there is exatly one number c with
f(c) = 0. 1



2 Exerise Set 1.19. Find the seond Taylor polynomial for f(x) = ex cosx about x0 = 0, and:a. Use P2(0.5) to approximate f(0.5), �nd an upper bound for |f(0.5)− P2(0.5)|, and ompare thisto the atual error.b. Find a bound for the error |f(x)− P2(x)|, for x in [0, 1].. Approximate ∫ 1

0

f(x) dx using ∫ 1

0

P2(x) dx.d. Find an upper bound for the error in part ().SOLUTION: Sine
f ′(x) = ex(cosx− sinx), f ′′(x) = −2ex(sinx), and f ′′′(x) = −2ex(sinx+ cosx),we have f(0) = 1, f ′(0) = 1, and f ′′(0) = 0. So

P2(x) = 1 + x and R2(x) =
−2eξ(sin ξ + cos ξ)

3!
x3.a. We have P2(0.5) = 1 + 0.5 = 1.5 and

|f(0.5)− P2(0.5)| ≤ max
ξ∈[0.0.5]

∣

∣

∣

∣

−2eξ(sin ξ + cos ξ)

3!
(0.5)2

∣

∣

∣

∣

≤ 1

3
(0.5)2 max

ξ∈[0,0.5]
|eξ(sin ξ + cos ξ)|.To maximize this quantity on [0, 0.5], �rst note thatDxe

x(sinx+ cosx) = 2ex cosx > 0, for all x in
[0, 0.5]. This implies that the maximum and minimum values of ex(sinx+ cosx) on [0, 0.5] our atthe endpoints of the interval, and

e0(sin 0 + cos 0) = 1 < e0.5(sin 0.5 + cos 0.5) ≈ 2.24.Hene
|f(0.5)− P2(0.5)| ≤

1

3
(0.5)3(2.24) ≈ 0.0932.b. A similar analysis to that in part (a) gives, for all x ∈ [0, 1],

|f(x)− P2(x)| ≤
1

3
(1.0)3e1(sin 1 + cos 1) ≈ 1.252..

∫ 1

0

f(x) dx ≈
∫ 1

0

1 + x dx =

[

x+
x2

2

]1

0

=
3

2
.d. From part (b),

∫ 1

0

|R2(x)| dx ≤
∫ 1

0

1

3
e1(cos 1 + sin 1)x3 dx =

∫ 1

0

1.252x3 dx = 0.313.Sine
∫ 1

0

ex cosx dx =

[

ex

2
(cosx+ sinx)

]1

0

=
e

2
(cos 1 + sin 1)− 1

2
(1 + 0) ≈ 1.378,the atual error is |1.378− 1.5| ≈ 0.12.



Mathematial Preliminaries 314. Use the error term of a Taylor polynomial to estimate the error involved in using sinx ≈ x toapproximate sin 1◦.SOLUTION: First we need to onvert the degree measure for the sine funtion to radians. We have
180◦ = π radians, so 1◦ = π

180 radians. Sine f(x) = sinx, f ′(x) = cosx, f ′′(x) = − sinx, and
f ′′′(x) = − cosx, we have f(0) = 0, f ′(0) = 1, and f ′′(0) = 0. The approximation sinx ≈ x isgiven by f(x) ≈ P2(x) and R2(x) = − cos ξ

3! x
3. If we use the bound | cos ξ| ≤ 1, then

∣

∣

∣sin
( π

180

)

− π

180

∣

∣

∣ =
∣

∣

∣R2

( π

180

)∣

∣

∣ =

∣

∣

∣

∣

− cos ξ

3!

( π

180

)3
∣

∣

∣

∣

≤ 8.86× 10−7.16. Let f(x) = ex/2 sin x
3 .a. Use Maple to determine the third Malaurin polynomial P3(x).b. Findf (4)(x) and bound the error |f(x)− P3(x)| on [0, 1].SOLUTION: a. De�ne f(x) by

f := exp (x2 ) · sin (x3 )
f := e

(1/2)x sin

(

1

3
x

)Then �nd the �rst three terms of the Taylor series with
g := taylor(f, x = 0, 4)

g :=
1

3
x+

1

6
x2 +

23

648
x3 +O

(

x4
)Extrat the third Malaurin polynomial with

p3 := onvert(g, polynom)
p3 :=

1

3
x+

1

6
x2 +

23

648
x3b. Determine the fourth derivative.

f4 := diff(f, x, x, x, x)
f4 := − 119

1296
e
(1/2x) sin

(

1

3
x

)

+
5

54
e
(1/2x) cos

(

1

3
x

)Find the �fth derivative.
f5 := diff(f4, x)

f5 := − 199

2592
e
(1/2x) sin

(

1

3
x

)

+
61

3888
e
(1/2x) cos

(

1

3
x

)See if the fourth derivative has any ritial points in [0, 1].
p := fsolve(f5 = 0, x, 0..1)

p := .6047389076The extreme values of the fourth derivative will our at x = 0, 1, or p.



4 Exerise Set 1.1
c1 := evalf(subs(x = p, f4))

c1 := .09787176213

c2 := evalf(subs(x = 0, f4))

c2 := .09259259259

c3 := evalf(subs(x = 1, f4))

c3 := .09472344463The maximum absolute value of f (4)(x) is c1 and the error is given byerror := c1/24 error := .00407799008924. In Example 3 it is stated that x we have | sinx| ≤ |x|. Use the following to verify this statement.a. Show that for all x ≥ 0 the funtion f(x) = x− sinx is non-dereasing, whih implies that
sinx ≤ x with equality only when x = 0.b. Use the fat that the sine funtion is odd to reah the onlusion.SOLUTION: First observe that for f(x) = x− sinx we have f ′(x) = 1− cosx ≥ 0, beause

−1 ≤ cosx ≤ 1 for all values of x. Also, the statement learly holds when |x| ≥ π, beause
| sinx| ≤ 1.a. The observation implies that f(x) is non-dereasing for all values of x, and in partiular that
f(x) > f(0) = 0 when x > 0. Hene for x ≥ 0, we have x ≥ sinx, and when 0 ≤ x ≤ π, we have
| sinx| = sinx ≤ x = |x|.b.When −π < x < 0, we have π ≥ −x > 0. Sine sinx is an odd funtion, the fat (from part (a))that sin(−x) ≤ (−x) implies that | sinx| = − sinx ≤ −x = |x|.As a onsequene, for all real numbers x we have | sinx| ≤ |x|.28. Suppose f ∈ C[a, b], and that x1 and x2 are in [a, b].a. Show that a number ξ exists between x1 and x2 with

f(ξ) =
f(x1) + f(x2)

2
=

1

2
f(x1) +

1

2
f(x2).b. Suppose that c1 and c2 are positive onstants. Show that a number ξ exists between x1 and x2with

f(ξ) =
c1f(x1) + c2f(x2)

c1 + c2
.. Give an example to show that the result in part (b) does not neessarily hold when c1 and c2have opposite signs with c1 6= −c2.SOLUTION:a. The number

1

2
(f(x1) + f(x2))



Mathematial Preliminaries 5is the average of f(x1) and f(x2), so it lies between these two values of f . By the Intermediate ValueTheorem 1.11 there exist a number ξ between x1 and x2 with
f(ξ) =

1

2
(f(x1) + f(x2)) =

1

2
f(x1) +

1

2
f(x2).b. Letm = min{f(x1), f(x2)} andM = max{f(x1), f(x2)}. Thenm ≤ f(x1) ≤M and

m ≤ f(x2) ≤M, so
c1m ≤ c1f(x1) ≤ c1M and c2m ≤ c2f(x2) ≤ c2M.Thus

(c1 + c2)m ≤ c1f(x1) + c2f(x2) ≤ (c1 + c2)Mand
m ≤ c1f(x1) + c2f(x2)

c1 + c2
≤M.By the Intermediate Value Theorem 1.11 applied to the interval with endpoints x1 and x2, there existsa number ξ between x1 and x2 for whih

f(ξ) =
c1f(x1) + c2f(x2)

c1 + c2
.. Let f(x) = x2 + 1, x1 = 0, x2 = 1, c1 = 2, and c2 = −1. Then f(x) > 0 for all values of x, but

c1f(x1) + c2f(x2)

c1 + c2
=

2(1)− 1(2)

2− 1
= 0.Exerise Set 1.2, page 282. . Find the largest interval in whih p∗ must lie to approximate√2 with relative error at most 10−4.SOLUTION: We need

∣

∣p∗ −
√
2
∣

∣

∣

∣

√
2
∣

∣

≤ 10−4, so ∣

∣

∣p∗ −
√
2
∣

∣

∣ ≤
√
2× 10−4;that is,

−
√
2× 10−4 ≤ p∗ −

√
2 ≤

√
2× 10−4.This implies that p∗ must be in the interval (√2(0.9999),

√
2(1.0001)

)

.5. e. Use three-digit rounding arithmeti to ompute
13
14 − 6

7

2e− 5.4
,and determine the absolute and relative errors.SOLUTION: Using three-digit rounding arithmeti gives 13

14 = 0.929, 6
7 = 0.857, and e = 2.72. So

13

14
− 6

7
= 0.0720 and 2e− 5.4 = 5.44− 5.40 = 0.0400.



6 Exerise Set 1.2Hene
13
14 − 6

7

2e− 5.4
=

0.0720

0.0400
= 1.80.The orret value is approximately 1.954, so the absolute and relative errors to three digits are

|1.80− 1.954| = 0.154 and |1.80− 1.954|
1.954

= 0.0788,respetively.7. e. Repeat Exerise 5(e) using three-digit hopping arithmeti.SOLUTION: Using three-digit hopping arithmeti gives 13
14 = 0.928, 6

7 = 0.857, and e = 2.71. So
13

14
− 6

7
= 0.0710 and 2e− 5.4 = 5.42− 5.40 = 0.0200.Hene

13
14 − 6

7

2e− 5.4
=

0.0710

0.0200
= 3.55.The orret value is approximately 1.954, so the absolute and relative errors to three digits are

|3.55− 1.954| = 1.60, and |3.55− 1.954|
1.954

= 0.817,respetively. The results in Exerise 5(e) were onsiderably better.9. a. Use the �rst three terms of the Malaurin series for the artangent funtion to approximate
π = 4

[

arctan 1
2 + arctan 1

3

], and determine the absolute and relative errors.SOLUTION: Let P (x) = x− 1
3x

3 + 1
5x

5. Then P ( 12) = 0.464583 and P ( 13) = 0.3218107, so
π = 4

[

arctan
1

2
+ arctan

1

3

]

≈ 3.145576.The absolute and relative errors are, respetively,
|π − 3.145576| ≈ 3.983× 10−3 and |π − 3.145576|

|π| ≈ 1.268× 10−3.12. Let
f(x) =

ex − e−x

x
.a. Find limx→0 f(x).b. Use three-digit rounding arithmeti to evaluate f(0.1).. Replae eah exponential funtion with its third Malaurin polynomial and repeat part (b).SOLUTION: a. Sine limx→0 e

x − e−x = 1− 1 = 0 and limx→0 x = 0, we an use L'HospitalsRule to give
lim
x→0

ex − e−x

x
= lim

x→0

ex + e−x

1
=

1 + 1

1
= 2.



Mathematial Preliminaries 7b.With three-digit rounding arithmeti we have e0.100 = 1.11 and e−0.100 = 0.905, so
f(0.100) =

1.11− 0.905

0.100
=

0.205

0.100
= 2.05.. The third Malaurin polynomials give

ex ≈ 1 + x+
1

2
x2 +

1

6
x3 and e−x ≈ 1− x+

1

2
x2 − 1

6
x3,so

f(x) ≈
(

1 + x+ 1
2x

2 + 1
6x

3
)

−
(

1− x+ 1
2x

2 − 1
6x

3
)

x
=

2x+ 1
3x

3

x
= 2 +

1

3
x2.Thus, with three-digit rounding, we have

f(0.100) ≈ 2 +
1

3
(0.100)2 = 2+ (0.333)(0.001) = 2.00 + 0.000333 = 2.00.15. . Find the deimal equivalent of the �oating-point mahine number

0 01111111111 0101001100000000000000000000000000000000000000000000.SOLUTION: This binary mahine number is the deimal number
+ 21023−1023

(

1 +

(

1

2

)2

+

(

1

2

)4

+

(

1

2

)7

+

(

1

2

)8
)

= 20
(

1 +
1

4
+

1

16
+

1

128
+

1

256

)

= 1 +
83

256
= 1.32421875.16. . Find the deimal equivalents of the next largest and next smallest �oating-point mahine number to

0 01111111111 0101001100000000000000000000000000000000000000000000.SOLUTION: The next smallest mahine number is
0 01111111111 0101001011111111111111111111111111111111111111111111

=1.32421875− 21023−1023
(

2−52
)

=1.3242187499999997779553950749686919152736663818359375,and next largest mahine number is
0 01111111111 0101001100000000000000000000000000000000000000000001

=1.32421875+ 21023−1023
(

2−52
)

=1.3242187500000002220446049250313080847263336181640625.21. a. Show that the polynomial nesting tehnique an be used to evaluate
f(x) = 1.01e4x − 4.62e3x − 3.11e2x + 12.2ex − 1.99.



8 Exerise Set 1.2b. Use three-digit rounding arithmeti and the formula given in the statement of part (a) to evaluate
f(1.53).. Redo the alulations in part (b) using the nesting form of f(x) that was found in part (a).d. Compare the approximations in parts (b) and ().SOLUTION: a. Sine enx = (ex)

n, we an write
f(x) = ((((1.01)ex − 4.62) ex − 3.11) ex + 12.2) ex − 1.99.b. Using e1.53 = 4.62 and three-digit rounding gives e2(1.53) = (4.62)2 = 21.3,

e3(1.53) = (4.62)2(4.62) = (21.3)(4.62) = 98.4, and e4(1.53) = (98.4)(4.62) = 455. So
f(1.53) = 1.01(455)− 4.62(98.4)− 3.11(21.3) + 12.2(4.62)− 1.99

= 460− 455− 66.2 + 56.4− 1.99

= 5.00− 66.2 + 56.4− 1.99

= −61.2 + 56.4− 1.99 = −4.80− 1.99 = −6.79..We have
f(1.53) = (((1.01)4.62− 4.62)4.62− 3.11)4.62 + 12.2)4.62− 1.99

= (((4.67− 4.62)4.62− 3.11)4.62 + 12.2)4.62− 1.99

= ((0.231− 3.11)4.62 + 12.2)4.62− 1.99

= (−13.3 + 12.2)4.62− 1.99 = −7.07.d. The exat result is 7.61, so the absolute errors in parts (b) and () are, respetively,
| − 6.79 + 7.61| = 0.82 and | − 7.07 + 7.61| = 0.54. The relative errors are, respetively, 0.108 and
0.0710.24. Suppose that fl(y) is a k-digit rounding approximation to y. Show that

∣

∣

∣

∣

y − fl(y)

y

∣

∣

∣

∣

≤ 0.5× 10−k+1.SOLUTION: We will onsider the solution in two ases, �rst when dk+1 ≤ 5, and then when
dk+1 > 5.When dk+1 ≤ 5, we have

∣

∣

∣

∣

y − fl(y)

y

∣

∣

∣

∣

=
0.dk+1 . . .× 10n−k

0.d1 . . .× 10n
≤ 0.5× 10−k

0.1
= 0.5× 10−k+1.When dk+1 > 5, we have

∣

∣

∣

∣

y − fl(y)

y

∣

∣

∣

∣

=
(1− 0.dk+1 . . .)× 10n−k

0.d1 . . .× 10n
<

(1− 0.5)× 10−k

0.1
= 0.5× 10−k+1.Hene the inequality holds in all situations.



Mathematial Preliminaries 928. Show that both sets of data given in the opening appliation for this hapter an give values of T thatare onsistent with the ideal gas law.SOLUTION: For the initial data, we have
0.995 ≤ P ≤ 1.005, 0.0995 ≤ V ≤ 0.1005,

0.082055 ≤ R ≤ 0.082065, and 0.004195 ≤ N ≤ 0.004205.This implies that
287.61 ≤ T ≤ 293.42.Sine 15◦ Celsius = 288.16 kelvin, we are within the bound. When P is doubled and V is halved,

1.99 ≤ P ≤ 2.01 and 0.0497 ≤ V ≤ 0.0503,so
286.61 ≤ T ≤ 293.72.Sine 19◦ Celsius = 292.16 kelvin, we are again within the bound. In either ase it is possible that theatual temperature is 290.15 kelvin = 17◦ Celsius.Exerise Set 1.3, page 393. a. Determine the number n of terms of the series

arctanx = lim
n→∞

Pn(x) =
∞
∑

i=1

(−1)i+1 x2i−1

(2i− 1)that are required to ensure that |4Pn(1)− π| < 10−3.b. How many terms are required to ensure the 10−10 auray needed for an approximation to π?SOLUTION: a. Sine the terms of the series
π = 4 arctan1 = 4

∞
∑

i=1

(−1)i+1 1

2i− 1alternate in sign, the error produed by trunating the series at any term is less than the magnitude ofthe next term. To ensure signi�ant auray, we need to hoose n so that
4

2(n+ 1)− 1
< 10−3 or 4000 < 2n+ 1.So n ≥ 2000.b. In this ase, we need

4

2(n+ 1)− 1
< 10−10 or n > 20,000,000,000.Clearly, a more rapidly onvergent method is needed for this approximation.



10 Exerise Set 1.35. Another formula for omputing π an be dedued from the identity
π

4
= 4 arctan

1

5
− arctan

1

239
.Determine the number of terms that must be summed to ensure an approximation to π to within 10−3.SOLUTION: The identity implies that

π = 4

∞
∑

i=1

(−1)i+1 1

52i−1(2i− 1)
−

∞
∑

i=1

(−1)i+1 1

2392i−1(2i− 1)The seond sum is muh smaller than the �rst sum. So we need to determine the minimal value of iso that the i+ 1st term of the �rst sum is less than 10−3. We have
i := 1 :

4

51(1)
=

4

5
, i = 2 :

4

53(3)
=

4

375
and i = 3 :

4

55(5)
=

4

15625
= 2.56× 10−4.So 3 terms are suf�ient.8. a. How many alulations are needed to determine a sum of the form

n
∑

i=1

i
∑

j=1

aibj?b. Re-express the series in a way that will redue the number of alulations needed to determine thissum.SOLUTION: a. For eah i, the inner sum∑i
j=1 aibj requires i multipliations and i− 1 additions,for a total of

n
∑

i=1

i =
n(n+ 1)

2
multipliations and n

∑

i=1

i− 1 =
n(n+ 1)

2
− n additions.One the n inner sums are omputed, n− 1 additions are required for the �nal sum.The �nal total is:

n(n+ 1)

2
multipliations and (n+ 2)(n− 1)

2
additions.b. By rewriting the sum as

n
∑

i=1

i
∑

j=1

aibj =
n
∑

i=1

ai

i
∑

j=1

bj,we an signi�antly redue the amount of alulation. For eah i, we now need i− 1 additions to sum
bj's for a total of

n
∑

i=1

i − 1 =
n(n+ 1)

2
− n additions.One the bj's are summed, we need n multipliations by the ai's, followed by n− 1 additions of theproduts.The total additions by this method is still 1

2 (n+ 2)(n− 1), but the number of multipliations hasbeen redued from 1
2n(n+ 1) to n.



Mathematial Preliminaries 1110. Devise an algorithm to ompute the real roots of a quadrati equation in the most ef�ient manner.SOLUTION: The following algorithm uses the most effetive formula for omputing the roots of aquadrati equation.INPUT A, B, C.OUTPUT x1, x2.Step 1 If A = 0 then if B = 0 then OUTPUT (`NO SOLUTIONS');STOP.else set x1 = −C/B;OUTPUT (`ONE SOLUTION',x1);STOP.Step 2 Set D = B2 − 4AC.Step 3 IfD = 0 then set x1 = −B/(2A);OUTPUT (`MULTIPLE ROOTS', x1);STOP.Step 4 IfD < 0 then set
b =

√
−D/(2A);

a = −B/(2A);OUTPUT (`COMPLEX CONJUGATE ROOTS');
x1 = a+ bi;
x2 = a− bi;OUTPUT (x1, x2);STOP.Step 5 If B ≥ 0 then set
d = B +

√
D;

x1 = −2C/d;
x2 = −d/(2A)else set
d = −B +

√
D;

x1 = d/(2A);
x2 = 2C/d.Step 6 OUTPUT (x1, x2);STOP.15. Suppose that as x approahes zero,

F1(x) = L1 +O (xα) and F2(x) = L2 +O
(

xβ
)

.Let c1 and c2 be nonzero onstants, and de�ne
F (x) = c1F1(x) + c2F2(x) and G(x) = F1(c1x) + F2(c2x).Show that if γ = minimum {α, β}, then as x approahes zero,a. F (x) = c1L1 + c2L2 +O (xγ)



12 Exerise Set 1.3b. G(x) = L1 + L2 +O (xγ)SOLUTION: Suppose for suf�iently small |x| we have positive onstants k1 and k2 independent of
x, for whih

|F1(x) − L1| ≤ K1|x|α and |F2(x) − L2| ≤ K2|x|β .Let c = max (|c1|, |c2|, 1),K = max (K1, K2), and δ = max (α, β).a.We have
|F (x)− c1L1 − c2L2| =|c1(F1(x)− L1) + c2(F2(x)− L2)|

≤|c1|K1|x|α + |c2|K2|x|β

≤cK
(

|x|α + |x|β
)

≤cK|x|γ
(

1 + |x|δ−γ
)

≤ K|x|γ ,for suf�iently small |x|. Thus, F (x) = c1L1 + c2L2 +O (xγ).b.We have
|G(x) − L1 − L2| =|F1(c1x) + F2(c2x)− L1 − L2|

≤K1|c1x|α +K2|c2x|β

≤Kcδ
(

|x|α + |x|β
)

≤Kcδ|x|γ
(

1 + |x|δ−γ
)

≤ K ′′|x|γ ,for suf�iently small |x|. Thus, G(x) = L1 + L2 +O (xγ).16. Consider the Fibonai sequene de�ned by F0 = 1, F1 = 1, and Fn+2 = Fn+1 + Fn, if n ≥ 0.De�ne xn = Fn+1/Fn. Assuming that limn→∞ xn = x onverges, show that the limit is the goldenratio: x =
(

1 +
√
5
)

/2.SOLUTION: Sine
lim
n→∞

xn = lim
n→∞

xn+1 = x and xn+1 = 1 +
1

xn
,we have

x = 1 +
1

x
, whih implies that x2 − x− 1 = 0.The only positive solution to this quadrati equation is x =

(

1 +
√
5
)

/2.17. The Fibonai sequene also satis�es the equation
Fn ≡ F̃n =

1√
5

[(

1 +
√
5

2

)n

−
(

1−
√
5

2

)n]

.a.Write a Maple proedure to alulate F100.b. Use Maple with the default value of Digits followed by evalf to alulate F̃100..Why is the result from part (a) more aurate than the result from part (b)?d.Why is the result from part (b) obtained more rapidly than the result from part (a)?e. What results when you use the ommand simplify instead of evalf to ompute F̃100?



Mathematial Preliminaries 13SOLUTION: a. To save spae we will show the Maple output for eah step in one line. Maple wouldprodue this output on separate lines. The proedure for alulating the terms of the sequene are:
n := 98; f := 1; s := 1

n := 98 f := 1 s := 1for i from 1 to n do
l := f + s; f := s; s := l; od :

l :=2 f := 1 s := 2

l :=3 f := 2 s := 3...
l :=218922995834555169026 f := 135301852344706746049 s := 218922995834555169026

l :=354224848179261915075b.We have
F100 :=

1sqrt(5) (( (1 + sqrt(5)
2

)100

−
(

1− sqrt(5)
2

)100
)

F100 :=
1√
5

(

(

1

2
+

1

2

√
5

)100

−
(

1

2
− 1

2

√
5

)100
)evalf(F100)

0.3542248538× 1021. The result in part (a) is omputed using exat integer arithmeti, and the result in part (b) isomputed using ten-digit rounding arithmeti.d. The result in part (a) required traversing a loop 98 times.e. The result is the same as the result in part (a).



14 Exerise Set 1.3



Solutions of Equations of One VariableExerise Set 2.1, page 541. Use the Bisetion method to �nd p3 for f(x) = √
x− cosx on [0, 1].SOLUTION: Using the Bisetion method gives a1 = 0 and b1 = 1, so f(a1) = −1 and

f(b1) = 0.45970. We have
p1 =

1

2
(a1 + b1) =

1

2
and f(p1) = −0.17048 < 0.Sine f(a1) < 0 and f(p1) < 0, we assign a2 = p1 = 0.5 and b2 = b1 = 1. Thus

f(a2) = −0.17048 < 0, f(b2) = 0.45970 > 0, and p2 =
1

2
(a2 + b2) = 0.75.Sine f(p2) = 0.13434 > 0, we have a3 = 0.5; b3 = p3 = 0.75 so that

p3 =
1

2
(a3 + b3) = 0.625.2. a. Let f(x) = 3(x+1)

(

x− 1
2

)

(x− 1). Use the Bisetion method on the interval [−2, 1.5] to �nd p3.SOLUTION: Sine
f(x) = 3(x+ 1)

(

x− 1

2

)

(x− 1),we have the following sign graph for f(x):
x0 1 32

0

00 0

2

2

2 2 22 2 2 1 1

2

1 1 1

x        

2x      1

22 21

(x) f 

2 22

1

2

22

22

02 2 112 2 1 1

1

1 1 1 11 1 1 1 1 1x 1 1 1 11 1

11 1 1 1

02 2 2 22 2 2

2

2

2 2222 2

1 11 11 11 1 12 22 1

1 11 1 1

1 11 1 1

1 11 1 1

1
22

1
22

2

 1Thus, a1 = −2, with f(a1) < 0, and b1 = 1.5, with f(b1) > 0. Sine p1 = − 1
4 , we have f(p1) > 0.We assign a2 = −2, with f(a2) < 0, and b2 = − 1

4 , with f(b2) > 0. Thus, p2 = −1.125 and
f(p2) < 0. Hene, we assign a3 = p2 = −1.125 and b3 = −0.25. Then p3 = −0.6875.15



16 Exerise Set 2.18. a. Sketh the graphs of y = x and y = tanx.b. Use the Bisetion method to �nd an approximation to within 10−5 to the �rst positive value of xwith x = tanx.SOLUTION:a. The graphs of y = x and y = tanx are shown in the �gure. From the graph it appears that thegraphs ross near x = 4.5.
10

210

y

  5

10 x

y = x

y = tan xb. Beause g(x) = x− tanx has
g(4.4) ≈ 1.303 > 0 and g(4.6) ≈ −4.260 < 0,the fat that g is ontinuous on [4.4, 4.6] gives us a reasonable interval to start the bisetion proess.Using Algorithm 2.1 gives p16 = 4.4934143, whih is aurate to within 10−5.11. Let f(x) = (x+ 2)(x+ 1)x(x − 1)3(x− 2). To whih zero of f does the Bisetion methodonverge for the following intervals?a. [−3, 2.5]. [−1.75, 1.5]SOLUTION: Sine

f(x) = (x + 2)(x+ 1)x(x− 1)3(x− 2),we have the following sign graph for f(x).
x0 1 3

3

2

0

00 0

2

2

2 2 22 2 2 2 2 1 12 2 1 1 1

x      1

2x      2

23 22 21

(x) f 

2 22 1

0

2 2 12 22 22 2 1 1 1 1 11 1 1 1 1 1x   1 1

0

2 2

11

2

2 22

2 22

2 22

2 22

2

2

2

2

2

2

2 22

1 1 1 1 1 11 1 1 1 1 1x 1 2 1 1111 1 1 1

02 2 112 2 1 1 1 1 1 11 1 1 1 1 1x 1 1 1 11 1

0

0

2 2 2 22 2 2 2

2

1 12 1 11 11 1 12 22 1

1 11 1 1 12

2

2 22 0  2 21 1 1 11 1

( )

a. The interval [−3, 2.5] ontains all 5 zeros of f . For a1 = −3, with f(a1) < 0, and b1 = 2.5, with
f(b1) > 0, we have p1 = (−3 + 2.5)/2 = −0.25, so f(p1) < 0. Thus we assign a2 = p1 = −0.25,with f(a2) < 0, and b2 = b1 = 2.5, with f(b1) > 0.



Solutions of Equations of One Variable 17Hene p2 = (−0.25 + 2.5)/2 = 1.125 and f(p2) < 0. Then we assign a3 = 1.125, with f(a3) < 0,and b3 = 2.5, with f(b3) > 0. Sine [1.125, 2.5] ontains only the zero 2, the method onverges to 2.. The interval [−1.75, 1.5] ontains the zeros −1, 0, 1. For a1 = −1.75, with f(a1) > 0, and
b1 = 1.5, with f(b1) < 0, we have p1 = (−1.75 + 1.5)/2 = −0.125 and f(p1) < 0. Then we assign
a2 = a1 = −1.75, with f(a1) > 0, and b2 = p1 = −0.125, with f(b2) < 0. Sine [−1.75,−0.125]ontains only the zero−1, the method onverges to −1.12. Use the Bisetion Algorithm to �nd an approximation to√3 that is aurate to within 10−4.SOLUTION: The funtion de�ned by f(x) = x2 − 3 has √3 as its only positive zero. Applying theBisetion method to this funtion on the interval [1, 2] gives√3 ≈ p14 = 1.7320. Using a smallerstarting interval would derease the number of iterations that are required.14. Use Theorem 2.1 to �nd a bound for the number of iterations needed to approximate a solution to theequation x3 + x− 4 = 0 on the interval [1, 4] to an auray of 10−3.SOLUTION: First note that the partiular equation plays no part in �nding the bound; all that isneeded is the interval and the auray requirement. To �nd an approximation that is aurate towithin 10−3, we need to determine the number of iterations n so that

|p− pn| <
b− a

2n
=

4− 1

2n
< 0.001; that is, 3× 103 < 2n.As a onsequene, a bound for the number of iterations is n ≥ 12. Applying the Bisetion Algorithmgives p12 = 1.3787.17. De�ne the sequene {pn} by pn =

n
∑

k=1

1

k
. Show that lim

n→∞
(pn − pn−1) = 0, even though thesequene {pn} diverges.SOLUTION: Sine pn − pn−1 = 1/n, we have limn→∞(pn − pn−1) = 0. However, pn is the nthpartial sum of the divergent harmoni series. The harmoni series is the lassi example of a serieswhose terms go to zero, but not rapidly enough to produe a onvergent series. There are many proofsof the divergene of this series, any alulus text should give at least two. One proof will simplyanalyze the partial sums of the series and another is based on the Integral Test.The point of the problem is not the fat that this partiular sequene diverges, it is that a test for anapproximate solution to a root based on the ondition that |pn − pn−1| is small should always besuspet. Conseutive terms of a sequene might be lose to eah other, but not suf�iently lose to theatual solution you are seeking.19. A trough of water of length L = 10 feet has a ross setion in the shape of a semiirle with radius

r = 1 foot. When �lled with water to within a distane h of the top, the volume V = 12.4 ft3 of thewater is given by the formula
12.4 = 10

[

0.5π − arcsinh− h
(

1− h2
)1/2

]Determine the depth of the water to within 0.01 feet.



18 Exerise Set 2.2SOLUTION: Applying the Bisetion Algorithm on the interval [0, 1] to the funtion
f(h) = 12.4− 10

[

0.5π − arcsinh− h
(

1− h2
)1/2

]gives h ≈ p13 = 0.1617, so the depth is r − h ≈ 1− 0.1617 = 0.8383 feet.Exerise Set 2.2, page 643. The following methods are proposed to ompute 211/3. Rank them in order, based on their apparentspeed of onvergene, assuming p0 = 1.a. pn =
20pn−1 + 21/p2n−1

21b. pn = pn−1 −
p3n−1 − 21

3p2n−1. pn = pn−1 −
p4n−1 − 21pn−1

p2n−1 − 21d. pn =

(

21

pn−1

)1/2SOLUTION: a. Sine
pn =

20pn−1 + 21/p2n−1

21
, we have g(x) =

20x+ 21/x2

21
=

20

21
x+

1

x2
,and g′(x) = 20

21
− 2

x3
. Thus, g′ (211/3) = 20

21
− 2

21
=

6

7
≈ 0.857.b. Sine

pn = pn−1 −
p3n−1 − 21

3p2n−1

, we have g(x) = x− x3 − 21

3x2
= x− 1

3
x+

7

x2
=

2

3
x+

7

x2and g′(x) = 2

3
− 7

x3
. Thus, g′ (211/3) = 2

3
− 1

3
=

1

3
= 0.333.. Sine

pn = pn−1 −
p4n−1 − 21pn−1

p2n−1 − 21
,we have

g(x) = x− x4 − 21x

x2 − 21
=
x3 − 21x− x4 + 21x

x2 − 21
=
x3 − x4

x2 − 21and
g′(x) =

(

x2 − 21
) (

3x2 − 4x3
)

−
(

x3 − x4
)

2x

(x2 − 21)
2 =

3x4 − 63x2 − 4x5 + 84x3 − 2x4 + 2x5

(x2 − 21)
2

=
−2x5 + x4 + 84x3 − 63x2

(x2 − 21)2
.



Solutions of Equations of One Variable 19Thus g′ (211/3) ≈ 5.706 > 1.d. Sine
pn =

(

21

pn−1

)1/2

, we have g(x) =

(

21

x

)1/2

=

√
21

x1/2
,and g′(x) = −

√
21

2x3/2
. Thus, g′ (211/3) = −1

2
.The order of onvergene would likely be (b), (d), (a). Choie () will not likely onverge.9. Use a �xed-point iteration method to determine an approximation to √

3 that is aurate to within
10−4.SOLUTION: As always with �xed-point iteration, the trik is to hoose the �xed-point problem thatwill produe rapid onvergene.Realling the solution to Exerise 12 in Setion 2.1, we need to onvert the root-�nding problem
f(x) = x2 − 3 into a �xed-point problem. One suessful solution is to write

0 = x2 − 3 as x =
3

x
,then add x to both sides of the latter equation and divide by 2. This gives g(x) = 0.5

(

x+ 3
x

), and for
p0 = 1.0, we have√3 ≈ p4 = 1.73205.12. . Determine a �xed-point funtion g and an appropriate interval that produes an approximation to apositive solution of 3x2 − ex = 0 that is aurate to within 10−5.SOLUTION: There are numerous possibilities:For g(x) =√ 1

3e
x on [0, 1] with p0 = 1, we have p12 = 0.910015.For g(x) = ln 3x2 on [3, 4] with p0 = 4, we have p16 = 3.733090.14. Use a �xed-point iteration method to determine a solution aurate to within 10−4 for x = tanx, for

x in [4, 5].SOLUTION: Using g(x) = tanx and p0 = 4 gives p1 = g(p0) ≈ 1.158, whih is not in the interval
[4, 5]. So we need a different �xed-point funtion. If we note that x = tanx implies that

1

x
=

1

tanx
and de�ne g(x) = x+

1

tanx
− 1

xwe obtain, again with p0 = 4:
p1 ≈ 4.61369, p2 = 4.49596, p3 = 4.49341 and p4 = 4.49341.Beause p3 and p4 agree to �ve deimal plaes it is reasonable to assume that these values aresuf�iently aurate.18. a. Show that Theorem 2.3 is true if |g′(x)| ≤ k is replaed by the statement �g′(x) ≤ k < 1, for all

x ∈ [a, b]�.b. Show that Theorem 2.4 may not hold when |g′(x)| ≤ k is replaed by the statement�g′(x) ≤ k < 1, for all x ∈ [a, b]�.



20 Exerise Set 2.2SOLUTION: a. The proof of existene is unhanged. For uniqueness, suppose p and q are �xedpoints in [a, b] with p 6= q. By the Mean Value Theorem, a number ξ in (a, b) exists with
p− q = g(p)− g(q) = g′(ξ)(p− q) ≤ k(p− q) < p− q,giving the same ontradition as in Theorem 2.3.b. For Theorem 2.4, onsider g(x) = 1− x2 on [0, 1]. The funtion g has the unique �xed point

p = 1
2

(

−1 +
√
5
)

.With p0 = 0.7, the sequene eventually alternates between numbers lose to 0and to 1, so there is no onvergene.19. a. Use Theorem 2.4 to show that the sequene
xn =

1

2
xn−1 +

1

xn−1onverges for any x0 > 0.b. Show that if 0 < x0 <
√
2, then x1 > √

2.. Show that the sequene in (a) onverges for every x0 > 0.SOLUTION: a. First let g(x) = x/2 + 1/x. For x 6= 0, we have g′(x) = 1/2− 1/x2. If x > √
2,then 1/x2 < 1/2, so g′(x) > 0. Also, g (√2

)

=
√
2.Suppose, as is the assumption given in part (a), that x0 > √

2. Then
x1 −

√
2 = g(x0)− g

(√
2
)

= g′(ξ)
(

x0 −
√
2
)

,where√2 < ξ < x0. Thus, x1 −√
2 > 0 and x1 > √

2. Further,
x1 =

x0
2

+
1

x0
<
x0
2

+
1√
2
=
x0 +

√
2

2
,and√2 < x1 < x0. By an indutive argument, we have

√
2 < xm+1 < xm < . . . < x0.Thus, {xm} is a dereasing sequene that has a lower bound and must therefore onverge. Suppose

p = limm→∞ xm. Then
p = lim

m→∞

(

xm−1

2
+

1

xm−1

)

=
p

2
+

1

p
.Thus

p =
p

2
+

1

p
, whih implies that p2 = 2,so p = ±

√
2. Sine xm >

√
2 for allm, limm→∞ xm =

√
2.b. Consider the situation when 0 < x0 <

√
2, whih is the situation in part (b). Then we have

0 <
(

x0 −
√
2
)2

= x20 − 2x0
√
2 + 2,so

2x0
√
2 < x20 + 2 and √

2 <
x0
2

+
1

x0
= x1.



Solutions of Equations of One Variable 21. To omplete the problem, we onsider the three possibilities for x0 > 0.Case 1: x0 > √
2, whih by part (a) implies that limm→∞ xm =

√
2.Case 2: x0 =

√
2, whih implies that xm =

√
2 for allm and that limm→∞ xm =

√
2.Case 3: 0 < x0 <

√
2, whih implies that√2 < x1 by part (b). Thus

0 < x0 <
√
2 < xm+1 < xm < . . . < x1 and lim

m→∞
xm =

√
2.In any situation, the sequene onverges to√2, and rapidly, as we will disover in the Setion 2.3.24. Suppose that the funtion g has a �xed-point at p, that g ∈ C[a, b], and that g′ exists in (a, b). Showthat if |g′(p)| > 1, then the �xed-point sequene will fail to onverge for any initial hoie of p0,exept if pn = p for some value of n.SOLUTION: Sine g′ is ontinuous at p and |g′(p)| > 1, by letting ǫ = |g′(p)| − 1 there exists anumber δ > 0 suh that

|g′(x)− g′(p)| < ε = |g′(p)| − 1,whenever 0 < |x− p| < δ. Sine
|g′(x) − g′(p)| ≥ |g′(p)| − |g′(x)|,for any x satisfying 0 < |x− p| < δ, we have

|g′(x)| ≥ |g′(p)| − |g′(x)− g′(p)| > |g′(p)| − (|g′(p)| − 1) = 1.If p0 is hosen so that 0 < |p− p0| < δ, we have by the Mean Value Theorem that
|p1 − p| = |g(p0)− g(p)| = |g′(ξ)||p0 − p|,for some ξ between p0 and p. Thus, 0 < |p− ξ| < δ and

|p1 − p| = |g′(ξ)||p0 − p| > |p0 − p|.This means that when an approximation gets lose to p, but is not equal to p, the sueeding terms ofthe sequene move away from p. So the sequene annot onverge to p.Exerise Set 2.3, page 751. Let f(x) = x2 − 6 and p0 = 1. Use Newton's method to �nd p2.SOLUTION: Let f(x) = x2 − 6. Then f ′(x) = 2x, and Newton's method beomes
pn = pn−1 −

f(pn−1)

f ′(pn−1)
= pn−1 −

p2n−1 − 6

2pn−1
.With p0 = 1, we have

p1 = p0 −
p20 − 6

2p0
= 1− 1− 6

2
= 1 + 2.5 = 3.5and

p2 = p1 −
p21 − 6

2p1
= 3.5− 3.52 − 6

2(3.5)
= 2.60714.



22 Exerise Set 2.33. Let f(x) = x2 − 6. With p0 = 3 and p1 = 2, �nd p3 for (a) the Seant method and (b) the method ofFalse Position..Whih method gives better results?SOLUTION: The formula for both the Seant method and the method of False Position is
pn = pn−1 −

f(pn−1)(pn−1 − pn−2)

f(pn−1)− f(pn−2)
.a. The Seant method:With p0 = 3 and p1 = 2, we have f(p0) = 9− 6 = 3 and f(p1) = 4− 6 = −2. The Seant methodgives

p2 = p1 −
f(p1)(p1 − p0)

f(p1)− f(p0)
= 2− (−2)(2− 3)

−2− 3
= 2− 2

−5
= 2.4and f(p2) = 2.42 − 6 = −0.24. Then we have

p3 = p2 −
f(p2)(p2 − p1)

f(p2)− f(p1)
= 2.4− (−0.24)(2.4− 2)

(−0.24− (−2)
= 2.4− −0.096

1.76
= 2.45454.b. The method of False Position:With p0 = 3 and p1 = 2, we have f(p0) = 3 and f(p1) = −2. As in the Seant method (part (a)),

p2 = 2.4 and f(p2) = −0.24. Sine f(p1) < 0 and f(p2) < 0, the method of False Position requiresa reassignment of p1. Then p1 is hanged to p0 so that p1 = 3, with f(p1) = 3, and p2 = 2.4, with
f(p2) = −0.24. We alulate p3 by

p3 = p2 −
f(p2)(p2 − p1)

f(p2)− f(p1)
= 2.4− (−0.24)(2.4− 3)

−0.24− 3
= 2.4− 0.144

−3.24
= 2.44444.. Sine√6 ≈ 2.44949, the auray of the approximations is the same. Continuing to moreapproximations would show that the Seant method is better.5. . Apply Newton's method to �nd a solution to x− cosx = 0 in the interval [0, π/2] that is aurateto within 10−4.SOLUTION: With f(x) = x− cosx, we have f ′(x) = 1 + sinx, and the sequene generated byNewton's method is

pn = pn−1 −
pn−1 − cos pn−1

1 + sin pn−1
.For p0 = 0, we have p1 = 1, p2 = 0.75036, p3 = 0.73911, and p4 = 0.73909.7. . Apply the Seant method to �nd a solution to x− cosx = 0 in the interval [0, π/2] that is aurateto within 10−4.SOLUTION: The Seant method approximations are generated by the sequene

pn = pn−1 −
(pn−1 − cos pn−1)(pn−1 − pn−2)

(pn−1 − cos pn−1)− (pn−2 − cos pn−2)
.



Solutions of Equations of One Variable 23Using the endpoints of the intervals as p0 and p1, we have the entries in the following table.
n pn

0 0
1 1.5707963
2 0.6110155
3 0.7232695
4 0.7395671
5 0.7390834
6 0.73908519. . Apply the method of False Position to �nd a solution to x− cosx = 0 in the interval [0, π/2] that isaurate to within 10−4.SOLUTION: The method of False Position approximations are generated using this same formula asin Exerise 7, but inorporates the additional braketing test. Using the endpoints of the intervals as

p0 and p1, we have the entries in the following table.
n pn

0 0
1 1.5707963
2 0.6110155
3 0.7232695
4 0.7372659
5 0.7388778
6 0.7390615
7 0.739082513. Apply Newton's method to �nd a solution, aurate to within 10−4, to the value of x that produesthe losest point on the graph of y = x2 to the point (1, 0).SOLUTION: The distane between an arbitrary point (x, x2) on the graph of y = x2 and the point

(1, 0) is
d(x) =

√

(x − 1)2 + (x2 − 0)2 =
√

x4 + x2 − 2x+ 1.Beause a derivative is needed to �nd the ritial points of d, it is easier to work with the square ofthis funtion,
f(x) = [d(x)]2 = x4 + x2 − 2x+ 1,whose minimum will our at the same value of x as the minimum of d(x). To minimize f(x) weneed x so that 0 = f ′(x) = 4x3 + 2x− 2.Applying Newton's method to �nd the root of this equation with p0 = 1 gives p5 = 0.589755. Thepoint on the graph of y = x2 that is losest to (1, 0) has the approximate oordinates

(0.589755, 0.347811).



24 Exerise Set 2.316. Use Newton's method to solve for roots of
0 =

1

2
+

1

4
x2 − x sinx− 1

2
cos 2x.SOLUTION: Newton's method with p0 = π

2 gives p15 = 1.895488 and with p0 = 5π gives
p19 = 1.895489. With p0 = 10π, the sequene does not onverge in 200 iterations.The results do not indiate the fast onvergene usually assoiated with Newton's method beause thefuntion and its derivative have the same roots. As we approah a root, we are dividing by numberswith small magnitude, whih inreases the round-off error.19. Explain why the iteration equation for the Seant method should not be used in the algebraiallyequivalent form

pn =
f(pn−1)pn−2 − f(pn−2)pn−1

f(pn−1)− f(pn−2)
.SOLUTION: This formula inorporates the subtration of nearly equal numbers in both thenumerator and denominator when pn−1 and pn−2 are nearly equal. The form given in the SeantAlgorithm subtrats a orretion from a result that should dominate the alulations. This is alwaysthe preferred approah.22. Use Maple to determine how many iterations of Newton's method with p0 = π/4 are needed to �nda root of f(x) = cosx− x to within 10−100.SOLUTION: We �rst de�ne f(x) and f ′(x) with

f := x− > os(x) − x
f := x→ cos(x) − xand

fp := x− > (D)(f)(x)
fp := x→ − sin(x)− 1We wish to use 100-digit rounding arithmeti so we set

Digits := 100; p0 := Pi/4 Digits := 100

p0 :=
1

4
πfor n from 1 to 7 do

p1 := evalf(p0− f(p0)/fp(p0))

err := abs(p1− p0)

p0 := p1

odThis gives
p7 = .73908513321516064165531208767387340401341175890075746496

56806357732846548835475945993761069317665319,whih is aurate to 10−100.



Solutions of Equations of One Variable 2523. The funtion de�ned by f(x) = ln
(

x2 + 1
)

− e0.4x cosπx has an in�nite number of zeros.a. Approximate the only negative zero to within 10−6.b. Approximate the four smallest positive zeros to within 10−6.. Find an initial approximation for the nth smallest positive zero.d. Approximate the 25th smallest positive zero to within 10−6.SOLUTION: The key to this problem is reognizing the behavior of e0.4x. When x is negative, thisterm goes to zero, so f(x) is dominated by ln (x2 + 1
). However, when x is positive, e0.4x dominatesthe alulations, and f(x) will be zero approximately when this term makes no ontribution; that is,when cosπx = 0. This ours when x = n/2 for a positive integer n. Using this information todetermine initial approximations produes the following results:a.We an use p0 = −0.5 to �nd the suf�iently aurate p3 = −0.4341431.b.We an use: p0 = 0.5 to give p3 = 0.4506567; p0 = 1.5 to give p3 = 1.7447381; p0 = 2.5 to give

p5 = 2.2383198; and p0 = 3.5 to give p4 = 3.7090412.. In general, a reasonable initial approximation for the nth positive root is n− 0.5.d. Let p0 = 24.5. A suf�iently aurate approximation to the 25th smallest positive zero is
p2 = 24.4998870.Graphs for various parts of the region are shown below.
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26. Determine the minimal annual interest rate i at whih an amount P = $1500 per month an beinvested to aumulate an amount A = $750, 000 at the end of 20 years based on the annuity dueequation
A =

P

i
[(1 + i)n − 1] .SOLUTION: This is simply a root-�nding problem where the funtion is given by

f(i) = A− P

i
[(1 + i)n − 1] = 750000− 1500

(i/12)

[

(1 + i/12)(12)(20) − 1
]

.Notie that n and i have been adjusted beause the payments are made monthly rather than yearly.The approximate solution to this equation an be found by any method in this setion. Newton'smethod is a bit umbersome for this problem, sine the derivative of f is ompliated. The Seantmethod would be a likely hoie. The minimal annual interest is approximately 6.67%.



26 Exerise Set 2.328. A drug administered to a patient produes a onentration in the blood stream given by
c(t) = Ate−t/3mg/mL, t hours after A units have been administered. The maximum safeonentration is 1mg/mL.a.What amount should be injeted to reah this safe level, and when does this our?b. When should an additional amount be administered, if it is administered when the level drops to0.25mg/mL?. Assuming 75% of the original amount is administered in the seond injetion, when should a thirdinjetion be given?SOLUTION: a. The maximum onentration ours when

0 = c′(t) = A

(

1− t

3

)

e−t/3.This happens when t = 3 hours, and sine the onentration at this time will be c(3) = 3Ae−1, weneed to administer A = 1
3e units.b.We need to determine t so that

0.25 = c(t) =

(

1

3
e

)

te−t/3.This ours when t is 11 hours and 5 minutes; that is, when t = 11.083 hours..We need to �nd t so that
0.25 = c(t) =

(

1

3
e

)

te−t/3 + 0.75

(

1

3
e

)

(t− 11.083)e−(t−11.083)/3.This ours after 21 hours and 14 minutes.29. Let f(x) = 33x+1 − 7 · 52x.a. Use the Maple ommands solve and fsolve to try to �nd all roots of f .b. Plot f(x) to �nd initial approximations to roots of f .. Use Newton's method to �nd the zeros of f to within 10−16.d. Find the exat solutions of f(x) = 0 algebraially.SOLUTION: a. First de�ne the funtion by
f := x− > 33x+1 − 7 · 52x

f := x→ 3(3x+1) − 7 52xsolve(f(x) = 0, x)

− ln (3/7)

ln (27/25)fsolve(f(x) = 0, x) fsolve(3(3x+1) − 7 5(2x) = 0, x)The proedure solve gives the exat solution, and fsolve fails beause the negative x-axis is anasymptote for the graph of f(x).



Solutions of Equations of One Variable 27b. Using the Maple ommand plot({f(x)}, x = 9.5..11.5) produes the following graph.
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x

. De�ne f ′(x) using
fp := x− > (D)(f)(x)

fp := x→ 3 3(3x+1) ln(3)− 14 5(2x) ln(5)Digits := 18; p0 := 11 Digits := 18

p0 := 11for i from 1 to 5 do
p1 := evalf(p0− f(p0)/fp(p0))

err := abs(p1− p0)

p0 := p1

odThe results are given in the following table.
i pi |pi − pi−1|

1 11.0097380401552503 0.0097380401552503
2 11.0094389359662827 0.0002991041889676
3 11.0094386442684488 0.2916978339 10−6

4 11.0094386442681716 0.2772 10−12

5 11.0094386442681716 0d. We have 33x+1 = 7 · 52x. Taking the natural logarithm of both sides gives
(3x+ 1) ln 3 = ln 7 + 2x ln 5.Thus

3x ln 3− 2x ln 5 = ln 7− ln 3, x(3 ln 3− 2 ln 5) = ln
7

3
,and

x =
ln 7/3

ln 27− ln 25
=

ln 7/3

ln 27/25
= − ln 3/7

ln 27/25
.This agrees with part (a).



28 Exerise Set 2.4Exerise Set 2.4, page 851. a. Use Newton's method to �nd a solution aurate to within 10−5 for x2 − 2xe−x + e−2x = 0,where 0 ≤ x ≤ 1.SOLUTION: Sine
f(x) = x2 − 2xe−x + e−2x and f ′(x) = 2x− 2e−x + 2xe−x − 2e−2x,the iteration formula is

pn = pn−1 −
f(pn−1)

f ′(pn−1)
= pn−1 −

p2n−1 − 2pn−1e
−pn−1 + e−2pn−1

2pn−1 − 2e−pn−1 + 2pn−1e−pn−1 − 2e−2pn−1
.With p0 = 0.5, we have

p1 = 0.5− (0.01134878)/(−0.3422895) = 0.5331555.Continuing in this manner, p13 = 0.567135 is aurate to within 10−5.3. a. Repeat Exerise 1(a) using the modi�ed Newton-Raphson method desribed in Eq. (2.13). Is therean improvement in speed or auray over Exerise 1?SOLUTION: Sine
f(x) =x2 − 2xe−x + e−2x,

f ′(x) =2x− 2e−x + 2xe−x − 2e−2x,and
f ′′(x) =2 + 4e−x − 2xe−x + 4e−2x,the iteration formula is

pn = pn−1 −
f(pn−1)f

′(pn−1)

[f ′(pn−1)]2 − f(pn−1)f ′′(pn−1)
.With p0 = 0.5, we have f(p0) = 0.011348781, f ′(p0) = −0.342289542, f ′′(p0) = 5.291109744and

p1 = 0.5− (0.01134878)(−0.342289542)

(−0.342289542)2 − (0.011348781)(5.291109744)
= 0.5680137.Continuing in this manner, p3 = 0.567143 is aurate to within 10−5, whih is onsiderably betterthan in Exerise 1.6. a. Show that the sequene pn = 1/n onverges linearly to p = 0, and determine the number of termsrequired to have |pn − p| < 5× 10−2.SOLUTION: First note that lim

n→∞
1

n
= 0. Sine

lim
n→∞

|pn+1 − p|
|pn − p| = lim

n→∞
1/(n+ 1)

1/n
= lim

n→∞
n

n+ 1
= 1,the onvergene is linear. To have |pn − p| < 5× 10−2, we need 1/n < 0.05, whih implies that

n > 20.



Solutions of Equations of One Variable 298. Show that:a. The sequene pn = 10−2n onverges quadratially to zero;b. The sequene pn = 10−nk does not onverge to zero quadratially, regardless of the size of k > 1.SOLUTION:a. Sine
lim
n→∞

|pn+1 − 0|
|pn − 0|2 = lim

n→∞
10−2n+1

(10−2n)
2 = lim

n→∞
10−2n+1

10−2·2n = lim
n→∞

10−2n+1

10−2n+1
= 1,the sequene is quadratially onvergent.b. For any k > 1,

lim
n→∞

|pn+1 − 0|
|pn − 0|2 = lim

n→∞
10−(n+1)k

(

10−nk
)2 = lim

n→∞
10−(n+1)k

10−2nk
= lim

n→∞
102n

k−(n+1)kdiverges. So the sequene pn = 10−nk does not onverge quadratially for any k > 1.10. Show that the �xed-point method
g(x) = x− mf(x)

f ′(x)has g′(p) = 0, if p is a zero of f of multipliitym.SOLUTION: If f has a zero of multipliitym at p, then a funtion q exists with
f(x) = (x− p)mq(x), where lim

x→p
q(x) 6= 0.Sine

f ′(x) = m(x− p)m−1q(x) + (x − p)mq′(x),we have
g(x) = x− mf(x)

f ′(x)
= x− m(x− p)mq(x)

m(x− p)m−1q(x) + (x− p)mq′(x)
,whih redues to

g(x) = x− m(x− p)q(x)

mq(x) + (x− p)q′(x)
.Differentiating this expression and evaluating at x = p gives

g′(p) = 1− mq(p)[mq(p)]

[mq(p)]2
= 0.If f ′′′ is ontinuous, Theorem 2.9 implies that this sequene produes quadrati onvergene one weare lose enough to the solution p.12. Suppose that f hasm ontinuous derivatives. Show that f has a zero of multipliitym at p if andonly if

0 = f(p) = f ′(p) = · · · = f (m−1)(p), but f (m)(p) 6= 0.



30 Exerise Set 2.4SOLUTION: If f has a zero of multipliitym at p, then f an be written as
f(x) = (x− p)mq(x), for x 6= p, where lim

x→p
q(x) 6= 0.Thus

f ′(x) = m(x− p)m−1q(x) + (x− p)mq′(x)and f ′(p) = 0. Also
f ′′(x) = m(m− 1)(x− p)m−2q(x) + 2m(x− p)m−1q′(x) + (x − p)mq′′(x)and f ′′(p) = 0.In general, for k ≤ m,

f (k)(x) =

k
∑

j=0

(

k

j

)

dj(x− p)m

dxj
q(k−j)(x)

=

k
∑

j=0

(

k

j

)

m(m− 1)· · ·(m− j + 1)(x− p)m−jq(k−j)(x).Thus, for 0 ≤ k ≤ m− 1, we have f (k)(p) = 0, but
f (m)(p) = m! lim

x→p
q(x) 6= 0.Conversely, suppose that f(p) = f ′(p) = . . . = f (m−1)(p) = 0 and f (m)(p) 6= 0. Consider the

(m− 1)th Taylor polynomial of f expanded about p :
f(x) =f(p) + f ′(p)(x − p) + . . .+

f (m−1)(p)(x− p)m−1

(m− 1)!
+
f (m)(ξ(x))(x − p)m

m!

=(x− p)m
f (m)(ξ(x))

m!
,where ξ(x) is between x and p. Sine f (m) is ontinuous, let

q(x) =
f (m)(ξ(x))

m!
.Then f(x) = (x− p)mq(x) and

lim
x→p

q(x) =
f (m)(p)

m!
6= 0.So p is a zero of multipliitym.14. Show that the Seant method onverges of order α, where α =

(

1 +
√
5
)

/2, the golden ratio.SOLUTION: Let en = pn − p. If
lim
n→∞

|en+1|
|en|α

= λ > 0,then for suf�iently large values of n, |en+1| ≈ λ|en|α. Thus
|en| ≈ λ|en−1|α and |en−1| ≈ λ−1/α|en|1/α.



Solutions of Equations of One Variable 31The hypothesis that for some onstant C and suf�iently large n we have
|pn+1 − p| ≈ C|pn − p| |pn−1 − p|, gives

λ|en|α ≈ C|en|λ−1/α|en|1/α, so |en|α ≈ Cλ−1/α−1|en|1+1/α.Sine the powers of |en| must agree,
α = 1 + 1/α and α =

1 +
√
5

2
.This number, the Golden Ratio, appears in numerous situations in mathematis and in art.Exerise Set 2.5, page 902. Apply Newton's method to approximate a root of

f(x) = e6x + 3(ln 2)2e2x − ln 8e4x − (ln 2)3 = 0.Generate terms until |pn+1 − pn| < 0.0002, and onstrut the Aitken's∆2 sequene {p̂n}.SOLUTION: Applying Newton's method with p0 = 0 requires �nding p16 = −0.182888. For theAitken's∆2 sequene, we have suf�ient auray with p̂6 = −0.183387.Newton's method fails toonverge quadratially beause there is a multiple root.3. Let g(x) = cos(x− 1) and p(0)0 = 2. Use Steffensen's method to �nd p(1)0 .SOLUTION: With g(x) = cos(x− 1) and p(0)0 = 2, we have
p
(0)
1 = g

(

p
(0)
0

)

= cos(2− 1) = cos 1 = 0.5403023and
p
(0)
2 = g

(

p
(0)
1

)

= cos(0.5403023− 1) = 0.8961867.Thus
p
(1)
0 = p

(0)
0 −

(

p
(0)
1 − p

(0)
0

)2

p
(0)
2 − 2p

(0)
1 − 2p

(0)
1 + p

(0)
0

= 2− (0.5403023− 2)2

0.8961867− 2(0.5403023)+ 2
= 2− 1.173573 = 0.826427.5. Steffensen's method is applied to a funtion g(x) using p(0)0 = 1 and p(0)2 = 3 to obtain p(1)0 = 0.75.What ould p(0)1 be?SOLUTION: Steffensen's method uses the formula

p
(0)
1 = p

(0)
0 −

(

p
(0)
1 − p

(0)
0

)2

p
(0)
2 − 2p

(0)
1 + p

(0)
0

.



32 Exerise Set 2.5Substituting for p(0)0 , p(0)2 , and p(1)0 gives
0.75 = 1−

(

p
(0)
1 − 1

)2

3− 2p
(0)
1 + 1

, that is, 0.25 =

(

p
(0)
1 − 1

)2

4− 2p
(0)
1

.Thus
1− 1

2
p
(0)
1 =

(

p
(0)
1

)2

− 2p
(0)
1 + 1, so 0 =

(

p
(0)
1

)2

− 1.5p
(0)
1 ,and p(0)1 = 1.5 or p(0)1 = 0.11. b. Use Steffensen's method to approximate the solution to within 10−5 of x = 0.5(sinx+ cosx),where g(x) = 0.5(sinx+ cosx).SOLUTION: With g(x) = 0.5(sinx+ cosx), we have

p
(0)
0 = 0, p

(0)
1 = g(0) = 0.5,

p
(0)
2 = g(0.5) = 0.5(sin 0.5 + cos 0.5) = 0.678504051,

p
(1)
0 = p

(0)
0 −

(

p
(0)
1 − p

(0)
0

)2

p
(0)
2 − 2p

(0)
1 + p

(0)
0

= 0.777614774,

p
(1)
1 = g

(

p
(1)
0

)

= 0.707085363,

p
(1)
2 = g

(

p
(1)
1

)

= 0.704939584,

p
(2)
0 = p

(1)
0 −

(

p
(1)
1 − p

(1)
0

)2

p
(1)
2 − 2p

(1)
1 + p

(1)
0

= 0.704872252,

p
(2)
1 = g

(

p
(2)
0

)

= 0.704815431,

p
(2)
2 = g

(

p
(2)
1

)

= 0.704812197,

p
(3)
0 = p

(2)
0 =

(

p
(2)
1 − p

(2)
0

)2

p
(2)
2 − 2p

(2)
1 + p

(2)
0

= 0.704812002,

p
(3)
1 = g

(

p
(3)
0

)

= 0.704812002,and
p
(3)
2 = g

(

p
(3)
1

)

= 0.704812197.Sine p(3)2 , p(3)1 , and p(3)0 all agree to within 10−5, we aept p(3)2 = 0.704812197 as an answer that isaurate to within 10−5.14. a. Show that a sequene {pn} that onverges to p with order α > 1 onverges superlinearly to p.b. Show that the sequene pn =
1

nn
onverges superlinearly to 0, but does not onverge of order α forany α > 1.SOLUTION: Sine {pn} onverges to p with order α > 1, a positive onstant λ exists with
λ = lim

n→∞
|pn+1 − p|
|pn − p|α .



Solutions of Equations of One Variable 33Hene
lim
n→∞

∣

∣

∣

∣

pn+1 − p

pn − p

∣

∣

∣

∣

= lim
n→∞

|pn+1 − p|
|pn − p|α · |pn − p|α−1 = λ · 0 = 0 and lim

n→∞
pn+1 − p

pn − p
= 0.This implies that {pn} that onverges superlinearly to p.b. The sequene onverges pn =

1

nn
superlinearly to zero beause

lim
n→∞

1/(n+ 1)(n+1)

1/nn
= lim

n→∞
nn

(n+ 1)(n+1)

= lim
n→∞

(

n

n+ 1

)n
1

n+ 1

= lim
n→∞

(

1

(1 + 1/n)n

)

1

n+ 1
=

1

e
· 0 = 0.However, for α > 1, we have

lim
n→∞

1/(n+ 1)(n+1)

(1/nn)α
= lim

n→∞
nαn

(n+ 1)(n+1)

= lim
n→∞

(

n

n+ 1

)n
n(α−1)n

n+ 1

= lim
n→∞

(

1

(1 + 1/n)n

)

lim
n→∞

n(α−1)n

n+ 1
=

1

e
· ∞ = ∞.So the sequene does not onverge of order α for any α > 1.17. Let Pn(x) be the nth Taylor polynomial for f(x) = ex expanded about x0 = 0.a. For �xed x, show that pn = Pn(x) satis�es the hypotheses of Theorem 2.14.b. Let x = 1, and use Aitken's∆2 method to generate the sequene p̂0, p̂1, . . . , p̂8.. Does Aitken's ∆2 method aelerate the onvergene in this situation?SOLUTION: a. Sine

pn = Pn(x) =

n
∑

k=0

1

k!
xk,we have

pn − p = Pn(x) − ex =
−eξ

(n+ 1)!
xn+1,where ξ is between 0 and x. Thus, pn − p 6= 0, for all n ≥ 0. Further,

pn+1 − p

pn − p
=

−eξ1

(n+2)!x
n+2

−eξ

(n+1)!x
n+1

=
e(ξ1−ξ)x

n+ 2
,where ξ1 is between 0 and 1. Thus

λ = lim
n→∞

e(ξ1−ξ)x

n+ 2
= 0 < 1.



34 Exerise Set 2.6b. The sequene has the terms shown in the following tables.
n 0 1 2 3 4 5 6

pn 1 2 2.5 2.6 2.7083 2.716 2.71805
p̂n 3 2.75 2.72 2.71875 2.7183 2.7182870 2.7182823

n 7 8 9 10

pn 2.7182539 2.7182787 2.7182815 2.7182818
p̂n 2.7182818 2.7182818. Aitken's∆2 method gives quite an improvement for this problem. For example, p̂6 is aurate towithin 5× 10−7. We need p10 to have this auray.Exerise Set 2.6, page 1002. b. Use Newton's method to approximate, to within 10−5, the real zeros of

P (x) = x4 − 2x3 − 12x2 + 16x− 40.Then redue the polynomial to lower degree, and determine any omplex zeros.SOLUTION: Applying Newton's method with p0 = 1 gives the suf�iently aurate approximation
p7 = −3.548233. When p0 = 4, we �nd another zero to be p5 = 4.381113. If we divide P (x) by

(x+ 3.548233)(x− 4.381113) = x2 − 0.832880x− 15.54521,we �nd that
P (x) ≈

(

x2 − 0.832880x− 15.54521
)(

x2 − 1.16712x+ 2.57315
)

.The omplex roots of the quadrati on the right an be found by the quadrati formula and areapproximately 0.58356± 1.49419i.4. b. Use Müller's method to �nd the real and omplex zeros of
P (x) = x4 − 2x3 − 12x2 + 16x− 40.SOLUTION: The following table lists the initial approximation and the roots. The �rst initialapproximation was used beause f(0) = −40, f(1) = −37, and f(2) = −56 implies that there is aminimum in [0, 2]. This is on�rmed by the omplex roots that are generated.The seond initial approximations are used to �nd the real root that is known to lie between 4 and 5,due to the fat that f(4) = −40 and f(5) = 115.



Solutions of Equations of One Variable 35The third initial approximations are used to �nd the real root that is known to lie between −3 and−4,sine f(−3) = −61 and f(−4) = 88.

p0 p1 p2 Approximated Roots Complex Conjugate Root
0 1 2 p7 = 0.583560− 1.494188i 0.583560+ 1.494188i
2 3 4 p6 = 4.381113

−2 −3 −4 p5 = −3.5482335. b. Find the zeros and ritial points of
f(x) = x4 − 2x3 − 5x2 + 12x− 5,and use this information to sketh the graph of f .SOLUTION: There are at most four real zeros of f and f(0) < 0, f(1) > 0, and f(2) < 0. This,together with the fat that limx→∞ f(x) = ∞ and limx→−∞ f(x) = ∞, implies that these zeros liein the intervals (−∞, 0), (0, 1), (1, 2), and (2,∞). Applying Newton's method for various initialapproximations in these intervals gives the approximate zeros: 0.5798, 1.521, 2.332, and −2.432. To�nd the ritial points, we need the zeros of
f ′(x) = 4x3 − 6x2 − 10x+ 12.Sine x = 1 is quite easily seen to be a zero of f ′(x), the ubi equation an be redued to a quadratito �nd the other two zeros: 2 and −1.5.Sine the quadrati formula applied to
0 = f ′′(x) = 12x2 − 12x− 10gives x = 0.5±

(√
39/6

), we also have the points of in�etion.A sketh of the graph of f is given below.
x 

y 

220

21

22 

23

20

1 3

60

2

40

9. Find a solution, aurate to within 10−4, to the problem
600x4 − 550x3 + 200x2 − 20x− 1 = 0, for 0.1 ≤ x ≤ 1by using the various methods in this hapter.



36 Exerise Set 2.6SOLUTION:a. Bisetion method: For p0 = 0.1 and p1 = 1, we have p14 = 0.23233.b. Newton's method: For p0 = 0.55, we have p6 = 0.23235.. Seant method: For p0 = 0.1 and p1 = 1, we have p8 = 0.23235.d.Method of False Position: For p0 = 0.1 and p1 = 1, we have p88 = 0.23025.e.Müller's method: For p0 = 0, p1 = 0.25, and p2 = 1, we have p6 = 0.23235.Notie that the method of False Position for this problem was onsiderably less effetive than both theSeant method and the Bisetion method.11. A an in the shape of a right irular ylinder must have a volume of 1000 m3. To form seals, thetop and bottom must have a radius 0.25 m more than the radius and the material for the side must be
0.25 m longer than the irumferene of the an. Minimize the amount of material that is required.SOLUTION: Sine the volume is given by

V = 1000 = πr2h,we have h = 1000/
(

πr2
). The amount of material required for the top of the an is π(r + 0.25)2,and a similar amount is needed for the bottom. To onstrut the side of the an, the material needed is

(2πr + 0.25)h. The total amount of materialM(r) is given by
M(r) = 2π(r + 0.25)2 + (2πr + 0.25)h = 2π(r + 0.25)2 + 2000/r+ 250/πr2.Thus

M ′(r) = 4π(r + 0.25)− 2000/r2 − 500/(πr3).SolvingM ′(r) = 0 for r gives r ≈ 5.363858. EvaluatingM(r) at this value of r gives the minimalmaterial needed to onstrut the an:
M(5.363858) ≈ 573.649 m2.12. Leonardo of Pisa (Fibonai) found the base 60 approximation

1 + 22

(

1

60

)

+ 7

(

1

60

)2

+ 42

(

1

60

)3

+ 33

(

1

60

)4

+ 4

(

1

60

)5

+ 40

(

1

60

)6as a root of the equation
x3 + 2x2 + 10x = 20.How aurate was his approximation?SOLUTION: The deimal equivalent of Fibonai's base 60 approximation is 1.3688081078532, andNewton's Method gives 1.36880810782137with a tolerane of 10−16. So Fibonai's answer wasorret to within 3.2× 10−11. This is the most aurate approximation to an irrational root of a ubipolynomial that is known to exist, at least in Europe, before the sixteenth entury. Fibonai probablylearned the tehnique for approximating this root from the writings of the great Persian poet andmathematiian Omar Khayyám.
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